Хитрости, которые помогут считать без калькулятора

Содержание:

Использование устного счета в повседневной жизни

Очень важным аспектом того, как правильно считать в уме, является знание таблицы умножения. Ее нужно как можно чаще повторять и использовать на практике. Для закрепления успеха следует минимизировать использование калькулятора.

В последнее время в анкетах для трудоустройства и непосредственно на собеседованиях работодатели требуют показать свои способности к математике. Если соискатель проявляет успехи при проведении расчетов в уме, это говорит о его аналитическом складе ума.

Если уметь успешно устно слагать и вычитать, можно не бояться нечестных продавцов, удивить своих близких и знакомых своим блестящим умом.

Учеными давно было доказано, что люди, которые регулярно считают в уме, менее подвержены раннему слабоумию и старческому маразму.

https://youtube.com/watch?v=LHnFXJnLdKE

Полезен ли устный счет?

Наш ответ – однозначно да. Развивая свой навык математического счета в уме, вы развиваете свой мозг, свою память и логику. А научившись хорошо считать в уме, вы вдобавок станете более остроумным. Но главное – вы избавитесь от вашей зависимости считать даже маленькие числа на калькуляторе. Согласитесь, разве вам не приятно поймать себя на мысли, когда вы будете тянуться к калькулятору: «Подожди, мне это не нужно!» и далее найти ответ в своей голове? 

К счастью, помимо развития подобного навыка за счет постоянных тренингов, существуют некоторые математические приемы, которые ускоряют и упрощают ваши вычисления в уме. Но также помните, что некоторые математические задачи все-таки было бы глупо не решать с помощью калькулятора. Так что все зависит от того, что именно вы хотите посчитать. 

Обучение делению с остатком

Когда ребенок усвоит материал о делении, можно усложнять задачу. Деление с остатком – это следующая ступень обучения. Объяснять нужно на доступных примерах:

  • Предложите ребенку разделить 35 на 8. Запишите в столбик задачу.
  • Чтобы ребенку было максимально понятно, можно показать ему таблицу умножения. В таблице наглядно видно, что в число 35 входит 4 раза число 8.
  • Запишите под числом 35 число 32.
  • Ребенку нужно от 35 вычесть 32. Получится 3. Число 3 является остатком.

Деление с остатком

Простые примеры для ребенка

На этом же примере можно продолжить:

  • При делении 35 на 8 получается остаток 3. К остатку нужно дописать 0. При этом после цифры 4 в столбике нужно поставить запятую. Теперь результат будет дробным.
  • При делении 30 на 8 получается 3. Эту цифру нужно записать после запятой.
  • Теперь нужно под значением 30 написать 24 (результат умножения 8 на 3). В итоге получится 6. К цифре 6 тоже нужно дописать ноль. Получится 60.
  • В число 60 помещается цифра 8 входит 7 раз. То есть, получится 56.
  • При вычитании 60 от 56 получается 4. К этой цифре тоже нужно подписать 0. Получается 40. В таблице умножения ребенок может увидеть, что 40 – это результат умножения 8 на 5. То есть, в число 40 цифра 8 входит 5 раз. Остатка нет. Ответ выглядит так – 4,375.

Данный пример может показаться ребенку сложным. Поэтому нужно много раз делить значения, у которых будет остаток.

Как объяснить деление с остатком?

Иногда разделить на равные доли невозможно. Легче всего объяснить такую ситуацию школьнику на несложной задаче. Например:

Решение столбиком с остатком, по математическому правилу, записывается точно так же, как и без него. Разница лишь в том, что в конце остаток будет. В этом варианте правильно прописать количество целых единиц и количество единиц в остатке (пример: 4 целых и 9 в остатке).

Обучение школьника должно проходить поэтапно, от простых примеров к более сложным.  Если нет понимания простых действий в делении, значит, нужно повторить информацию еще раз. Постепенно решение примеров начнет происходить быстрее и увереннее. Главное – поверить в силы маленького человека, быть терпеливым, и тогда делить числа методом столбца станет интересным занятием для школьника.

Обучение делению чисел столбиком с нолями

Деление чисел с нолями идентично обычному делению. Родителям нужно объяснить ребенку основные нюансы:

  • Расскажите, что если в конце делимого и делителя есть ноли, то их можно зачеркивать в уме. Предложите школьнику зачеркивать их простым карандашом для понимания. Дальше нужно делить, как и в обычных примерах. Например, если 1200 нужно разделить на 400, то ребенок может сократить пример, убрав два 0 у обоих чисел. А в примере деления 15600 на 560 можно сократить только по одному 0.
  • Объясните ученику, что если 0 есть только в делителе, то его нельзя сокращать.

Чтобы лучше усваивать материал, можно решить простой пример деления:

  • Запишите в тетради пример: 100 разделить на 10. Это легкий пример, так как при сокращении нолей он представлен так: 10 разделить на 1.
  • Ребенку следует под делителем написать цифру 10. Так как при умножении 1 на 10 получается требуемый результат. Под делимым ребенку нужно записать 10. Остатка у этого примера нет.

Предложите ребенку легкие примеры такого типа:

  • 200 разделить на 20;
  • 300 разделить на 30;
  • 400 разделить на 40;
  • 500 разделить на 50;
  • 600 разделить на 60;
  • 700 разделить на 70.

Далее можно переходить к сложным примерам. Но только после того, как ребенок усвоит результат.

Зачем нужно уметь считать в уме

Человеческий мозг – орган, который нуждается в постоянной нагрузке, иначе запускается механизм атрофии.

Еще одна особенность в том, что все нейронные процессы в мозге протекают одновременно и взаимосвязано. Так, недостаточная физическая и умственная активность, преобладание статической нагрузки, приводят к рассеянности, невнимательности и раздражительности. В худшем случае может развиться стрессовое состояние, последствия которого трудно предугадать.

Познание окружающего мира и законов общественной жизни, приходит к ребенку по мере взросления и обучения и математика играет в этом не последнюю роль, так как именно она учит строить логические связи, алгоритмы и параллели.

Психологи и опытные педагоги выделяют разные причины, почему ребенку необходимо учиться считать в уме:

  • Повышение концентрации внимания и наблюдательности.
  • Тренировка краткосрочной памяти.
  • Активизация мыслительных процессов и развитие грамотной речи.
  • Умение мыслить вариативно и абстрактно.
  • Тренировка умения распознавать закономерности и аналогии.

Советы детям по упражнениям в устном счете

Перед детьми стоят задачи другого порядка. Помимо утомительного заучивания, их ещё заставляют умножать и делить яблоки и помидоры, а если спросить, зачем это делается – учительница в лучшем случае скажет «надо», а ребенок утратит интерес ко всему процессу в целом.

Изменить систему образования за месяц невозможно, а вот помочь ребенку развить навыки устного счета – вполне реально.

Подготовительный этап

Объясните ребенку доступным языком, почему считать в уме – это не только полезно, но еще и интересно. Если решили заниматься с ним самостоятельно, подберите иллюстрированные материалы из разных источников и составьте график совместных занятий. Необязательно заниматься ежедневно и много часов. Это не пойдет на пользу. Достаточно посвятить этому двадцать минут три раза в неделю, но в одинаковое время, чтобы ребенок привык.

Примеры упражнений для детей

Начните с интересных задач, чтобы «включиться в игру». Покажите, как можно быстро получить ответ на трудный пример и обогнать всех одноклассников. Развивайте лидерские качества.

☞ Пример:

Воспользуемся правилом умножения двухзначных чисел с одинаковыми первыми цифрами и последними, дающими в сумме «10», чтобы решить пример «44*46». Первую цифру умножаем на ту, которая следует за ней по порядку. Последние цифры также перемножаем: 44 * 46 = (4*5 =20; 4*6 = 24) = 2024.

В школе подобные примеры решаются по старинке, в столбик. Это отнимает кучу времени только на то, чтобы все переписать. Зная таблицу умножения для 4, этот пример можно решить в уме за пару секунд.

Чему учат в школе и можно ли верить всему

Классическая школа в целом скептически относится к методикам ускоренного счета, приводя в пример детей, которые, обученные методам ментальной математики, затем не стремятся логически мыслить по другим предметам, хотят все делать быстро, как привыкли, а не качественно.

Но это связано в большей мере с косностью образовательной программы, чем с реальным положением вещей.

Видео информация

https://youtube.com/watch?v=q9COysaAb6k

Ментальная математика помогает активизировать мыслительные процессы, но не призывает выбросить тетради, чтобы не считать в столбик, и книги, чтобы не читать. Методы устного счета хорошо усваиваются ребенком параллельно с методами письменного, которые чаще используются в арифметике начальной школе. Он видит несколько путей решения задач и чувствует себя более уверенно, по сравнению с одноклассниками.

 Загрузка …

К сожалению, при проверке контрольной работы для педагога важнее увидеть правильный «как в учебнике» ход решения, а не реальные знания ребенка, но здесь ментальная математика уже бессильна.

Правила

Царица наук – математика – позаботилась о школьниках и составила свод законов, алгоритмов и правил, усвоив которые и умело ими пользуясь, дети полюбят математику и умственный труд:

  • Переместительное свойство сложения: меняя местами компоненты действия, получаем тот же результат.
  • Сочетательное свойство сложения: при складывании трех и более чисел любые два (или больше) числовые значения можно заменить их суммой.
  • Сложение и вычитание с переходом через десяток: дополнить больший компонент
  • До круглых десятков, а потом прибавить остаток от другого компонента.
  • Вычитаем вначале отдельные единицы из числа до знака действия, а далее из круглых десятков вычитаем остаток вычитаемого.
  • Представив уменьшаемое в виде суммы десятков и единиц, уберем из десятков большего меньшее и прибавим к ответу единицы уменьшаемого.
  • При складывании и вычитании круглых десятков (их еще величают «круглые» числа) десятки можно считать так же, как единицы.
  • Сложение и вычитание десятков и единиц. Десятки удобнее прибавлять к десяткам, а единицы — к единицам.

Прибавление числа к сумме

Способы следующие:

  • Вычисляем ее значение, а затем прибавляем к ней данную величину.
  • Прибавляем его к первому слагаемому, а затем к результату прибавляем второе слагаемое.
  • Число прибавляем ко второму слагаемому, а затем к ответу прибавляем первое слагаемое.

Прибавление суммы к числу

Способы следующие:

  • Вычислим ее показание, а затем прибавим к числу.
  • К числу прибавим первое слагаемое, а затем к результату прибавим второе слагаемое.
  • К числу прибавим второе слагаемое, а затем к результату прибавим первое слагаемое.

Использование главных свойств умножения

Методики таковы:

  • Переместительное свойство умножения. Если поменять сомножители местами, их произведение не изменится.
  • Сочетательное свойство умножения. При перемножении трех и более чисел любые два (и больше) числа можно заменить их произведением.
  • Распределительное свойство умножения. Чтобы умножить сумму на число, надо умножить каждое ее составляющее на это число и полученные произведения сложить.

Умножение и деление чисел на 10 и 100

Способы:

  • Чтобы увеличить любое число в 10 раз, надо приписать к нему справа один ноль.
  • Чтобы это же сделать в 100 раз — надо приписать к нему справа два ноля.
  • Чтобы уменьшить число в 10 раз, надо отбросить справа один ноль, а чтобы разделить на 100 — два ноля.

Умножение суммы на число

Способы:

  • 1-й способ. Посчитаем сумму и умножим ее на данную величину.
  • 2-й способ. Перемножим число с каждым из слагаемых, и полученные ответы сложим.

Умножение числа на сумму

Способы:

  • 1-й способ. Найдем сумму и умножим число на то, что получим.
  • 2-й способ. Умножим число на каждое из слагаемых, и полученные произведения сложим.

Деление суммы на число

Способы:

  • 1-й способ. Вычислим сумму и разделим ее на число.
  • 2-й способ. Каждое из слагаемых разделим на число и полученные частные сложим.

Деление числа на произведение

Варианты:

  • 1-й способ. Разделим число на первый множитель, а затем полученный результат разделим на второй множитель.
  • 2-й способ. Разделим число на второй множитель, а затем полученный результат разделим на первый множитель.

Что такое математика в уме – устный счет?

Устный счет – это умение с помощью математики проводить вычисления в своей голове. К сожалению, хорошо считать в уме могут не все. Но это не означает, что устному счету нельзя научиться. Нет, это, конечно, не означает, что вы, если вам не дано, сможете почти мгновенно вычислить в уме, сколько будет 8974387 x 396. Но в какой-то мере вы все же можете улучшить свои навыки устного счета. Так что же такое математика в уме ? 

Как мы уже сказали, устный счет – это вычисления без калькулятора и использования бумаги . Весь устный счет происходит в вашей голове. Чтобы научиться хорошо считать в уме, необходимо развивать в себе этот навык и постоянно тренироваться. Увы, без тренировок вы вряд ли сможете удивить кого-то своим умением считать большие числа в уме. 

Деление на двузначное число

Когда ученик 3-го класса усвоил деление на однозначное число, можно приступать к следующему этапу — работе с двузначными цифрами. Начинайте с простых, явных примеров, чтобы малыш понял алгоритм действий при делении на двузначные числа. Например, возьмите числа 196 и 28 и объясните принцип:

  1. Сначала подберите примерное число для ответа. Для этого выясните приблизительно, сколько цифр 28 поместится в 196. Для удобства можно округлять оба числа: 200:30. Получится не больше 6. Полученное число не нужно записывать, это только догадка.
  2. Проверяем результат умножением: 28х6. Получается 196. Предположения оказались верными.

  3. Запишите ответ: 196:28 =6.

Еще один вариант обучения: деление на двузначное число уголком. Такой способ больше подходит для работы с числами от четырех разрядов, то есть тысяч. Приведем простой пример:

Напишите на листе бумаги 4070, начертите уголок и подпишите делитель — 74.
Определите, с какого числа начнете делить. Спросите у ребенка, можно ли разделить 4 на 74, 40? В результате малыш поймет, что сначала нужно ограничиться числом 407. Очертите полученную цифру сверху полукругом. 0 останется в стороне.
Теперь нужно выяснить, сколько 74 поместится в 407. Действуем с помощью логики и проверки умножением. Получится 5. Записываем результат под уголком (под делителем).
Теперь умножаем 74 на 5 и записываем результат под делимым. Получится 370

Важно начинать запись с первого числа слева.
После записи нужно подвести горизонтальную черту и отнять 370 от 407. Получится 37.
37 разделить на 74 нельзя, поэтому вниз сносится оставшийся в верхнем ряду 0.
Теперь делим 370 на 74

Подбираем множитель (5) и записываем его под уголком.
Умножаем 5 на 74, записываем результат в столбик. Получится 370.
Опять получаем разность. Результат будет равен 0. Значит, деление считается завершенным без остатка.

4070:74=55. Частное смотрим под уголком.

Для проверки правильности решение произведите умножение: 74х55=4070.

В каком возрасте учить детей складывать в уме?

Научить ребенка совершать арифметические операции в уме проще всего в период, когда его мозг развивается наиболее активно. Обычно это возраст 5-7 лет. Однако дети проявляют заинтересованность к счету гораздо раньше. Развивать и поддерживать тягу к знаниям можно даже у малышей до 1 года. Этому способствуют первые игры:

  • «Сорока-ворона»;
  • «Вышли пальчики гулять»;
  • «Ладушки» и подобные.

В 2-4 года дети любят играть с кубиками, пирамидками и сортерами. Они с удовольствием возводят башни и цепляют на стержень кольца. Объясняйте ребенку, что сначала берется самый большой круг (первый), затем чуть поменьше (второй), еще меньше (третий) и так далее. Такие игры подстегивают любознательность и желание малыша пересчитать все, что есть вокруг.

В более старшем возрасте дети спокойно запоминают цифры и учатся считать. Дошкольник может легко справляться с несложными арифметическими задачками, различать «много и мало» и вести устный счет до 10. Как ознакомить ребенка с цифрами и первыми манипуляциями с ними? Нужно разобраться с основными правилами изучения чисел.

Секреты устного счёта

Существуют приемы устного счета — простые алгоритмы, которые желательно довести до автоматизма. После овладения простыми приёмами можно переходить к освоению более сложных.

Прибавляем числа 7,8,9

Для упрощения вычислений числа 7,8,9 сначала надо округлять до 10, а затем вычитать прибавку. К примеру, чтобы прибавить 9 к двузначному числу, надо сначала прибавить 10, а затем вычесть 1 и т.д.

Примеры:

56+7=56+10-3=63

47+8=47+10-2=55

73+9=73+10-1=82

Быстро складываем двузначные числа

Если последняя цифра двузначного числа больше пяти, округляем его в сторону увеличения. Выполняем сложение, из полученной суммы отнимаем «добавку».

Примеры:

54+39=54+40-1=93

26+38=26+40-2=64

Если последняя цифра двузначного числа меньше пяти, то складываем по разрядам: сначала прибавляем десятки, затем — единицы.

Пример:

57+32=57+30+2=89

Если слагаемые поменять местами, то сначала можно округлить число 57 до 60, а потом вычесть из общей суммы 3:

32+57=32+60-3=89

Складываем в уме трехзначные числа

Быстрый счет и сложение трехзначных чисел — это возможно? Да. Для этого надо разобрать трехзначные числа на сотни, десятки, единицы и поочередно их приплюсовать.

Пример:

249+533=(200+500)+(40+30)+(9+3)=782

Особенности вычитания: приведение к круглым числам

Вычитаемые округляем до 10, до 100. Если надо вычесть двузначное число, надо округлить его до 100, вычесть, а затем к остатку прибавить поправку. Это актуально если поправка невелика.

Примеры:

67-9=67-10+1=58

576-88=576-100+12=488

Вычитаем в уме трехзначные числа

Если в свое время был хорошо усвоен состав чисел от 1 до 10, то вычитание можно производить по частям и в указанном порядке: сотни, десятки, единицы.

Пример:

843-596=843-500-90-6=343-90-6=253-6=247 

Умножить и разделить

Моментально умножать и делить в уме? Это возможно, но без знания таблицы умножения не обойтись. Таблица умножения — это золотой ключик к быстрому счету в уме! Она применяется и при умножении, и при делении. Вспомним, что в начальных классах деревенской школы в дореволюционной Смоленской губернии (картина «Устный счет») дети знали продолжение таблицы умножения — с 11 до 19!

Хотя на мой взгляд достаточно знать таблицу от 1 до 10, чтобы мочь перемножать бо´льшие числа. Например:

15*16=15*10+(10*6+5*6)=150+60+30=240

Умножаем и делим на 4, 6, 8, 9

Овладев таблицей умножения на 2 и на 3 до автоматизма, сделать остальные расчеты будет проще простого.

Для умножения и деления двух- и трехзначных чисел применяем простые приёмы:

  • умножить на 4 — это дважды умножить на 2;

  • умножить на 6 — это значит умножить на 2, а потом на 3;

  • умножить на 8 — это трижды умножить на 2;

  • умножить на 9 — это дважды умножить на 3.

Например:

37*4=(37*2)*2=74*2=148;

412*6=(412*2)·3=824·3=2472

Аналогично:

  • разделить на 4 — это дважды разделить на 2;

  • разделить на 6 — это сначала разделить на 2, а потом на 3;

  • разделить на 8 — это трижды разделить на 2;

  • разделить на 9 — это дважды разделить на 3.

Например:

412:4=(412:2):2=206:2=103

312:6=(312:2):3=156:3=52

Как умножать и делить на 5

Число 5 — это половина от 10 (10:2). Поэтому сначала умножаем на 10, затем полученное делим пополам.

Пример:

326*5=(326*10):2=3260:2=1630

Еще проще правило деления на 5. Сначала умножаем на 2, а затем полученное делим на 10.

326:5=(326·2):10=652:10=65,2.

Умножение на 9

Чтобы умножить число на 9, необязательно его дважды умножать на 3. Достаточно его умножить на 10 и вычесть из полученного умножаемое число. Сравним, что быстрее:

37*9=(37*3)*3=111*3=333

или

37*9=37*10 — 37=370-37=333

Также давно замечены частные закономерности, которые значительно упрощают умножение двузначных чисел на 11 или на 101. Так, при умножении на 11, двузначное число как бы раздвигается. Составляющие его цифры остаются по краям, а в центре оказывается их сумма. Например: 24*11=264. При умножении на 101, достаточно приписать к двузначному числу такое же. 24*101= 2424. Простота и логичность таких примеров вызывает восхищение. Встречаются такие задачи очень редко — это примеры занимательные, так называемые маленькие хитрости.

Методика Зайцева

Позволяет воспитать ребенка логически думающего, умеющего анализировать информацию и обобщать ее, выделять существенное. Ученикам 1-2 класса эти пособия помогут разобраться в арифметических действиях с числами.

Для изучения математических приемов понадобятся специальные карточки («Стосчет») с числами 0 – 99 и таблицы, наглядно показывающие состав чисел (закрашено нужное число ячеек).

Сначала ребенок знакомится с числами первого десятка, определяет состав его числа, а затем переходит к арифметическим действиям с изученными цифрами.

Автор методики не рекомендует записывать сами примеры, изучая их наглядно и перемещаясь по числовой цепочке вверх или вниз в зависимости от того, складывают или вычитают числа.

Видеоурок с детьми по своей методике проводит Зайцев Н.А.

Кто такой Дэниел Таммет

Для начала немного о самом герое нашей статьи. Дэниел Таммет – это американский савант-вундеркинд, который может складывать, делить и умножать в уме числа, имеющие в своём составе до 100 знаков. Это даже не триллионы, а, наверное, те самые «гуголы» (числа с сотней нулей), о которых так любят говорить.

Родился Дэниел 31 января 1979 года в Лондоне. Свои способности проявил в возрасте 4 лет после сильнейшего приступа эпилепсии. В 2004 году побил мировой рекорд и воспроизвёл 22 514 знаков числа Пи после запятой.

Также этот человек знает 11 языков, включая родной для него английский. Изобрёл собственный язык (манти), грамматика которого напоминает финский и эстонский. Однако больше всего впечатляют, конечно, его математические способности.

Обучение делению столбиком в уме

В уме дети считают тоже столбиком. Это удобно и знакомо. У детей развито воображение, поэтому они смогут быстро освоить технику. Приступать к обучению деления столбиком в уме нужно тогда, когда ребенок без труда справляется с делением в тетради. Обучение:

  • Расскажите школьнику о том, что делить столбиком можно не только в тетради, но и в уме.
  • Объясните ученику о том, что частное можно разложить на составляющие.
  • Значение 3647необходимо поделить на 7. Нужно показать частное как сумму чисел 3500 и 147. Значение 3500 самое оптимальное, так как его можно поделить на 7, не имея остатка. В результате деления 3500 на 7 получается 500, а при делении 147 на 7 получается 21. Числа 500 и 21 нужно сложить, в результате получится 521. Данное число является ответом в примере деления 3647 на 7.

Ребенок не сразу может освоить эту технику деления. Все зависит от родителей. Их задача заключается в помощи ребенку без давления.

Уроки на сайте

Уроки устного счета, представленные на сайте, направлены именно на развитие этих трех составляющих. В первом уроке рассказано, как развить в себе предрасположенность к математике и арифметике, а также описаны основы счета и логики. Затем дан ряд уроков по специальным алгоритмам для совершения различных арифметических операций в уме. И наконец, в данном тренинге представлены дополнительные материалы, помогающие тренировать и развивать умение считать устно, для того, чтобы суметь применить свой талант и свои знания в жизни.

Урок 1. Способности. Упражнения и рекомендации по развитию устного счета, внимания, краткосрочной памяти.

Урок 1

Внимание и концентрация при счете в уме. Уроки 2-7

Алгоритмы. Что касается методик, то они даны в следующих уроках, которые разделены на несколько видов:

Уроки 2-7. Алгоритмы. Что касается методик, то они даны в следующих уроках, которые разделены на несколько видов:

  • Урок 2. Простые арифметические закономерности
  • Урок 3. Традиционные методы умножения двузначных чисел
  • Урок 4. Частные методики умножения двузначных чисел
  • Урок 5. Опорное число при умножении чисел до 100
  • Урок 6. Умножаем любые числа до 100
  • Урок 7. Возведение в квадрат

Дополнительные материалы. Тренировка. В дополнение к урокам на сайте представлены многочисленные приемы и способы, упражнения, методики, интересные примеры, статьи и видео и многое другое для тренировки и развития вашего быстрого счета в уме.

Уже сейчас вы можете проверить, как быстро вы считаете в уме.

Cтатистика На весь экран

Обучение делению в столбик в форме игры

Можно поставить задачи таким образом:

1Организуйте ребенку место для обучения в форме игры. Посадите его игрушки в круг, а ребенку дайте груши или конфеты. Предложите ученику разделить 4 конфеты между 2 или 3 куклами. Чтобы добиться понимания со стороны ребенка, постепенно прибавляйте количество конфет до 8 и 10. Даже если малыш будет долго действовать, не давите и не кричите на него. Вам потребуется терпение. Если ребенок делает что-то неправильно, исправляйте его спокойно. Затем, как он завершит первое действие деления конфет между участниками игры, попросит его вычислить, сколько конфет досталось каждой игрушке. Теперь вывод. Если было 8 конфет и 4 игрушки, то каждой досталось по 2 конфеты. Дайте ребенку понять, что разделить – это значит распределить равное количество конфет всем игрушкам.

2Обучать математическому действию можно с помощью цифр. Дайте ученику понять, что цифры можно квалифицировать, как груши или конфеты. Скажите, что количество груш, которое требуется разделить – это делимое. А количество игрушек, на которых приходятся конфеты – это делитель.

3Дайте ребенку 6 груш. Поставьте перед ним задачу: разделить количество груш между дедушкой, собакой и папой. Затем попросите его поделить 6 груш между дедушкой и папой. Объясните ребенку причину, по которой получился неодинаковый результат при делении.

4Расскажите ученику о делении с остатком. Дайте ребенку 5 конфет и попросите его раздать их поровну между котом и папой. У ребенка останется 1 конфета. Расскажите ребенку, почему получилось именно так. Данное математическое действие стоит рассмотреть отдельно, так как это может вызвать сложности.

Деление чисел

Обучение в игровой форме может помочь ребенку быстрее понять весь процесс деления чисел. Он сможет усвоить, что наибольшее число делится на наименьшее или наоборот. То есть, наибольшее число – это конфеты, а наименьшее – участники. В столбике 1 числом будет количество конфет, а 2 – количество участников.

Не перегружайте ребенка новыми знаниями. Обучать нужно постепенно. Переходить к новому материалу нужно тогда, когда предыдущий материал закреплен.

Усложняем задачу

От простого следует переходить к сложному. Как научить ребенка делению в столбик? К обучению следует переходить уже тогда, когда малыш хорошо усвоит таблицу умножения. Предположим, что нужно разделить 110 на 5.

Эти числа необходимо написать на чистом листке бумаги, а затем разделить их перпендикулярными линиями.

  1. Далее нужно объяснить ребенку, что число 110 является делимым, а число 5 – делителем.
  2. Первая цифра числа 110 – 1, ее нельзя разделить на 5. Следовательно, необходимо взять следующую цифру. Получится число 11, в которое 5 может поместиться два раза.
  3. В столбике под пятеркой нужно записать цифру 2. Далее необходимо попросить ученика умножить 5 на 2. У него получится 10. Эту цифру следует записать под числом 11.
  4. Затем вместе с ребенком нужно вычесть число 10 из 11. Получится 1, возле этой цифры нужно записать оставшийся нолик в столбике. Получится 10.
  5. Далее нужно разделить с малышом 10 на 5. Результат – 2, эту цифру нужно записать под пятеркой. Результатом деления является число 22.

Обучение лучше всего начинать с цифр, которые можно делить без остатка – однозначных, двузначных. Когда ребенок будет хорошо справляться с простыми операциями, задачу можно усложнить.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector